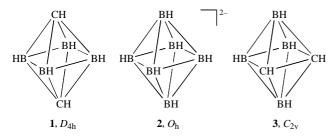
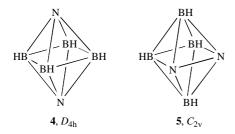
Low-energy barrier B₄ ring puckering rearrangement of 1,6-diaza-*closo*-hexaborane: an *ab initio* study

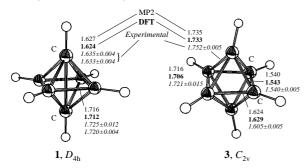

Ruslan M. Minyaev,* Vladimir I. Minkin, Tatyana N. Gribanova and Andrei G. Starikov

Institute of Physical and Organic Chemistry, Rostov State University, 344090 Rostov-on-Don, Russian Federation. Fax: +7 8632 434 5667; e-mail: minyaev@ipoc.rsu.ru


10.1070/MC2001v011n04ABEH001475

The *ab initio* [MP2(fu)/6-311+G**] and DFT (B3LYP/6-311+G**) calculations predict stable structures of *closo*-diazaboranes $1,6-N_2B_4H_4$ and $1,2-N_2B_4H_4$, with the low-energy barrier B_4 ring puckering rearrangement occurring in the $1,6-N_2B_4H_4$ stable structure.

According to both experimental¹⁻³ and computational data,^{4,5} closo-dicarborane 1,6-C₂B₄H₆ **1**, which is isoelectronic to closoborane B₆H₆²⁻ **2**, has a stable D_{4h} -symmetry structure and is energetically preferable than its 1,2-isomer **3**.



It may be expected that similar stable structures are also characteristic of diaza-closo-boranes 1,6-N₂B₄H₄ 4 and 1,2-N₂B₄H₄ 5 isoelectronic to 1 and 3, respectively, and that 4 is more stable than its isomer 5. Indeed, early preliminary PRDDO calculations on N₂B₄H₄ showed structure 4 to be more stable than 5, although the distorted trigonal prism to be predicted the most stable structure.

More recent *ab initio* calculations^{7,8} also showed that 1,6-isomer **4** is more stable than 1,2-**5**. However, in both cases it was found that structure **4** does not correspond to a minimum on the $N_2B_4H_4$ potential-energy surface (PES) and it was not studied the distortion directions from the D_{4h} structure of **4**.

In this work, we performed *ab initio* [MP2(fu)/6-311+G**] and density functional theory (B3LYP/6-311+G**) calculations^{9,10}

Figure 1 Geometry parameters of structures **1** and **3** calculated by *ab initio* (MP2/6-311+G**) and DFT (B3LYP/6-311+G**) methods. Experimental data for **1** are taken from ref. 1 (upper numbers) and from ref. 2 (lower numbers) and for **3** from ref. 3. The bond lengths and angles are indicated in angström units and degrees, respectively.

Table 1 Results of *ab initio* [MP2(fu)/6-311+ G^{**}] and DFT (B3LYP/6-311+ G^{**}) calculations for the structures of 1, 3–7.

Structure	Method	E_{tot}	λ	ΔE	ZPE	$\Delta E_{\rm ZPE}$	ω_1
$\overline{1,D_{4\mathrm{h}}}$	MP2	-178.784605	0	0	0.086648	0	421
	DFT	-179.284851	0	0	0.086128	0	380
3, C_{2v}	MP2	-178.769941	0	9.2	0.086734	9.2	433
	DFT	-179.270983	0	8.7	0.086115	8.7	395
4 , D_{4h}	MP2	-210.822065	1	1.0	0.060956	1.3	i184
	DFT	-211.348393	1	4.2	0.060449	4.6	i268
5, C_{2v}	MP2	-210.804263	0	12.2	0.061988	13.1	314
	DFT	-211.333654	0	13.5	0.061182	14.3	253
6 , D_{2d}	MP2	-210.823731	0	0	0.060607	0	231
24	DFT	-211.355047	0	0	0.059728	0	300
7, C _s	MP2	-210.757200	0	41.7	0.056079	38.9	17
	DFT^b	-211.294522	slope	37.9	_	_	_
B_4H_4 , T_d	MP2	-101.584553	0	_	0.050657	_	617
4 4 u	DFT	-101.409193	0	_	0.049508	_	609
$N_2, D_{\infty h}$	MP2	-109.346230	0		0.005570	_	2445
2	DFT	-109.559694	0	_	0.004906	_	2151

 $^aE_{\rm tot}$ (in a.u.) and ΔE are the total and relative energies (1 a.u. = 627.5095 kcal mol⁻¹); λ is the number of the negative hessian eigenvalues; ZPE (in a.u.) is the harmonic zero-point correction; $\Delta E_{\rm ZPE}$ (in kcal mol⁻¹) is the relative energy including harmonic zero-point correction; ω_1 (in cm⁻¹) is the smallest or imaginary harmonic vibration frequency. bResults correspond to a slope point with 5 Å distance from N₂ to the BB bond.

on compounds $\bf 4$ and $\bf 5$. For comparison, we also calculated the structures of *closo*-dicarboranes $\bf 1$ and $\bf 3$ at the same level of approximation.

In agreement with published data, $^{7.8}$ our *ab initio* calculations revealed that the structure of **4** of D_{4h} symmetry corresponds to a saddle point rather than a minimum on the PES $N_2B_4H_4$ and is the transition state for the low-energy barrier of the B_4 ring puckering rearrangement $\mathbf{6a} \neq \mathbf{4} \neq \mathbf{6b}$. At the same time, 1,2-isomer **5**, much like as its isoelectronic analogue **3**, has a stable structure of C_{2v} symmetry and is energetically less favourable than 1,6-isomer **6**.

According to the calculations, the structures of 1, 3 and 5, 6 correspond to minima ($\lambda=0$; hereafter, λ designates the number of negative hessian eigenvalues) on the PESs of $C_2B_4H_6$ and $N_2B_4H_4$, respectively. The calculated geometric and energy parameters of these structures and the saddle point for the structure of 4 are depicted in Figures 1 and 2 and listed in Table 1. As can be seen in Table 1 and Figure 1, the calculated geometric characteristics of *closo*-dicarboranes 1 and 3 are in good agreement with the gas-phase experimental data¹⁻³ and those obtained in previous theoretical studies.^{4,5} All calculated bond lengths are in

HB

$$BH$$
 BH
 AH
 AH

the range of the experimental values accounted for experimental errors. 1,6-Dicarbo-*closo*-hexaborane 1, 1,6- $C_2B_4H_6$ was found to be more stable than 1,2-isomer 3 by 9.2 kcal mol⁻¹ at the MP2 level and by 8.7 kcal mol⁻¹ at the DFT level. These values are consistent with the previous estimation (9.5 kcal mol⁻¹) obtained at the MP2/6-31G** level.⁴ No experimental data on the heats of formation of 1 and 3 are currently available.

The stable structure of 1,6-diaza-closo-hexaborane 6 has D_{2d} symmetry with two short (MP2, 1.500 and DFT, 1.454 Å) and two long (MP2, 1.750 and DFT, 1.807 Å) BN bonds. The basal B_4 ring has a boat conformation; the B–B bond lengths are equal to 1.699 (MP2) and 1.454 (DFT) Å. This value is very close to those of the basal B–B bonds in 1 and 3. Planarization of the B_4 basal cycle, $6 \rightarrow 4$, results in equalization of all the BN bonds and shortening of the B–B bonds. The structure of 4 is the true transition state structure ($\lambda = 1$, this identification of stationary point agrees with McKee's⁷ results $\lambda = 3$) for the puckering rearrangement $6a \rightleftharpoons 4 \rightleftharpoons 6b$ with the energy barrier as low as 1.0 (MP2) or 4.2 (DFT) kcal mol⁻¹. Accounting for zero-point energy (ZPE) does almost not change the energy barrier.

The tendency of the $D_{4\rm h}$ structure of 1,6-diaza-closo-hexaborane 4 to the $D_{4\rm h} \rightarrow D_{2\rm d}$ distortion is explained by the orbital interaction diagram (Figure 3), which shows that this distortion leads to slightly lowering the energy level of the bonding 1e orbitals of the $D_{2\rm d}$ cluster. Although the $D_{4\rm h}$ structure 4 satisfies to the 10e electrons rule formulated for the stable bipyramidal structures of main-group element clusters, 11 the orbital interaction providing for the stabilization of structures of this type, namely, mixing in the antibonding combination of p-orbitals of apical centers and e_g orbitals of the basal cycle, is weakened in 4, as compared to that in its carbon analogue 1. This is due to a widened energy gap between these orbitals in 4 caused by a greater electronegativity of nitrogen, which also results in less diffuse p-orbitals and their smaller overlap with e_g orbitals of the basal cycle.

As congeneric 1,2-dicarbo-closo-hexaborane 3, 1,2-diaza-closo-hexaborane 5 has a stable C_{2y} structure with a planar basal boron

Figure 2 Geometry parameters of structures **5–7** and borane B_4H_4 and dinitrogen calculated by *ab initio* (MP2/6-311+G**) and DFT (B3LYP/6-311+G**) methods. Experimental data for B_4H_4 are given for $B_4Cl_4^{12}$ and for N_2 are taken from ref. 14. The bond lengths and angles are indicated in angström units and degrees, respectively.

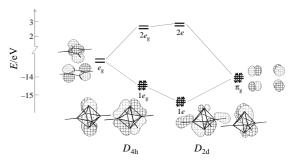


Figure 3 Diagram of formation of bonding molecular orbitals in 4 and 6.

ring. It contains BN bonds of two types: short [1.550 (MP2), 1.536 (DFT) Å] and long [1.639 (MP2), 1.632 (DFT) Å]. This diazaborane is by 12.2 (MP2) and 13.5 kcal mol-1 (DFT) energy disfavoured as compared to 1,6-isomer 6. Note that whereas for dicarboranes 1 and 3 and 1,2-diaza-closo-hexaborane 5 the results of MP2 calculations are consistent with those of the DFT method, for 1,6-diaza-closo-hexaborane 6 the bond lengths predicted by MP2 and DFT methods notably differ (~0.05 Å). The system 5 can be considered as a tight complex resulted from the interaction of dinitrogen with borane B₄H₄. In this context, a question arises whether N₂ and B₄H₄ can form a stable pre-reaction complex subsequently convertible to 5. No such a complex has been found by DFT calculations: the interaction between N₂ and B₄H₄ was repulsive at any distances. This finding is consistent with the conclusion that DFT methods do not correctly describe longrange interactions.¹³ At the same time, MP2 calculations predict the appearance of stable complex 7 stabilised by induced dipoledipole interactions between its components. The complex is 1.1 kcal mol⁻¹ stabilised relative to separated components (no account is done for the superposition error). Such a weak interaction does not affect the geometric parameters of N_2 and B_4H_4 moieties in complex 7 as compared to separated molecules. Complex **7** is 41.7 (at MP2 level) or 37.9 kcal mol⁻¹ (at DFT level) less stable than 1,2-isomer 5.

In conclusion, the MP2 and DFT calculations on hypothetical diaza-closo-boranes 5 and 6 indicate that these compounds, which are isoelectronic to dicarbo-closo-hexaboranes 1 and 3, respectively, possess stable highly symmetric structures. Compound 6 was predicted to be susceptible to undergo the lowenergy barrier B_4 ring puckering rearrangement $6a \neq 4 \neq 6b$.

This work was supported by the Russian Foundation for Basic Research (grant nos. 01-03-32546 and 00-15-97320).

References

- 1 V. S. Mastryukov, O. V. Dorofeeva, L. V. Vilkov, A. F. Zhigach, V. T. Laptev and A. B. Petrunin, J. Chem. Soc., Chem. Commun., 1973, 276.
- E. A. McNeill, K. L. Gallaher, F. R. Scholer and S. H. Bauer, *Inorg. Chem.*, 1973, 12, 2108.
- 3 R. A. Beadet and R. L. Poyntner, J. Chem. Phys., 1970, 53, 1899.
- 4 M. L. McKee, J. Am. Chem. Soc., 1992, 114, 879.
- 5 M. Bühl and P. von R. Schleyer, J. Am. Chem. Soc., 1992, 114, 477.
- 6 T. A. Halgren, I. M. Pepperber and W. N. Lipscomb, J. Am. Chem. Soc., 1975, 97, 1249.
- 7 M. J. McKee, J. Phys. Chem., 1991, 95, 9273.
- 8 E. D. Jemmis and G. Subramanian, J. Phys. Chem., 1994, 98, 9222.
- 9 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Pene, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.

- 10 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comput. Chem., 1993, **14**, 1347.
- 11 V. I. Minkin, R. M. Minyaev and Yu. A. Zhdanov, Nonclassical Structures of Organic Compounds, Mir, Moscow, 1987.

 12 J. A. Morrison, Chem. Rev., 1991, **91**, 35.

- 13 K. Müller-Dethiefs and P. Hobza, Chem. Rev., 2000, 100, 143.
- 14 R. J. Butcher and W. J. Jones, J. Chem. Soc., Faraday Trans. 2, 1974, 560.

Received: 10th May 2001; Com. 01/1801